AGRICULTURAL AND FOOD CHEMISTRY

Decontamination of Aflatoxin-Forming Fungus and Elimination of Aflatoxin Mutagenicity with Electrolyzed NaCl Anode Solution

Tetsuya Suzuki,^{*,†} Takashi Noro,[†] Yukio Kawamura,[‡] Kenji Fukunaga,[§] Masumi Watanabe,[†] Mari Ohta,[†] Hisashi Sugiue,[†] Yuri Sato,[†] Masahiro Kohno,^{||} and Kunimoto Hotta[⊥]

Laboratory of Food Wholesomeness and Soundness, Division of Life Sciences, Graduate School of Fisheries Science, Hokkaido University, Minato, Hakodate 041-8611, Japan, Laboratory of Nutrition, Faculty of Agriculture, Kinki University, Nara, Japan, Laboratory of Public Health, Kansai Medical University, Moriguchi, Osaka, Japan, Kochi University of Technology, Tosayamada, Kochi, Japan, and National Institute of Infectious Diseases, Toyama, Shinjyuku, Tokyo

Electrolysis of a 0.1% (17.1 mM) solution of NaCl using separate anode and cathode compartments gives rise to solutions containing active chemical species. The strongly acidic "anode solution" (EW-(+)) has high levels of dissolved oxygen and available chlorine in a form of hypochlorous acid (HOCI) with a strong potential for sterilization, which we have investigated here. Exposing Aspergillus parasiticus at an initial density of 10^3 spores in $10 \,\mu$ L to a 50-fold volume (500 μ L) of EW(+) containing ca. 390 µmol HOCI for 15 min at room temperature resulted in a complete inhibition of fungal growth, whereas the cathode solution (EW(-)) had negligible inhibitory effects. Moreover, the mutagenicity of aflatoxin B1 (AFB1) for Salmonella typhimurium TA-98 and TA-100 strains was strongly reduced after AFB₁ exposure to the EW(+) but not with the EW(-). In high-performance liquid chromatography analysis, the peak corresponding to AFB_1 disappeared after treatment with the EW(+), indicating decomposition of the aflatoxin. In contrast, the routinely used disinfectant sodium hypochlorite, NaOCI, of the same available chlorine content as that of EW(+) but in a different chemical form, hypochlorite (OCI⁻) ion, did not decompose AFB₁ at pH 11. However, NaOCI did decompose AFB₁ at pH 3, which indicated that the principle chemical formula to participate in the decomposition of AFB₁ is not the OCI⁻ ion but HOCI. Furthermore, because the decomposition of AFB₁ was suppressed by pretreating the EW(+) with the OH radical scavenger thiourea, the chemical species responsible for the AFB₁decomposing property of the EW(+) should be at least due to the OH radical originated from HOCI. The OH in EW(+) was proved by electron spin resonance analysis.

KEYWORDS: Aspergillus parasiticus; electrolyzed NaCl solution; inactivation of aflatoxin B₁; mutagenicity

INTRODUCTION

Securing the safety of food and animal feed is one of the most important factors in the welfare of humans and livestock. Among the many types of microorganisms that cause food borne disease, toxic fungi and their products (mycotoxins) threaten the health of humans and livestock by contaminating food and feed materials (1-4). One of the most highly potent mycotoxins, aflatoxin, is produced by *Aspergillus flavus* and *Aspergillus parasiticus* and causes both acute liver damage and liver cancer (5-9).

Developing measures to control mycotoxin contamination is a high priority for the food and animal feed industries. The most reliable method to prevent mycotoxicosis is to avoid the use of contaminated materials, to disinfect fungi (10, 11), and to inactivate mycotoxin. In the control against aflatoxins, many researchers have proposed and/or attempted measures to inactivate them (12, 13) or to suppress their production by fungi (14), for example, through exposure to ammonia vapor at high temperature (15). Most of the proposed methods are not necessarily practical, however, because they not only decompose aflatoxin but also deplete the quality of the food and feed materials themselves; furthermore, most proposed methods are expensive and energy-consuming. Therefore, research into effective and energy-saving measures of decomtanimation has attracted much interest recently (16, 17).

With the aim of finding a secure, effective, and energy-saving method to disinfect mycotoxin-producing fungi and to inactivate

10.1021/jf0108361 CCC: \$22.00 © 2002 American Chemical Society Published on Web 12/29/2001

^{*} To whom correspondence should be addressed. Tel: +81-138-40-5564. Fax: +81-138-40-5563. E-mail: ted@fish.hokudai.ac.jp.

[†] Hokkaido University.

[‡] Kinki University.

[§] Kansai Medical University.

Kochi University of Technology.

[⊥] National Institute of Infectious Diseases.

mycotoxin, we examined the effect of an electrolyzed dilute NaCl solution. This solution is generated by electrolyzing dilute NaCl solution, usually around 15–20 mM, with commercially available electrolysis devices at between 3 and 50 V of dc for several minutes in either a single-compartment chamber (18)or a two-compartment chamber separated by an ion exchangeable diaphragm (19). When the two-compartment chamber is used, a strongly acidic solution, or the "anode solution" (EW-(+)), containing hypochlorous acid (HOCl) forms in the anode compartment (20). The chemical species that form in the cathode compartment that forms the "cathode solution" (EW(-)) have not been fully characterized yet, but this solution exhibits some antioxidative effects. Miyashita et al. (21) reported an antioxidative effect of EW(-) on highly unsaturated fat and oils such as linoenic acid ethyl ester, docosahexaenoic acid ethyl ester, trilinolein, and so on. Shirahata et al. (22), on the other hand, reported superoxide dismutase- and catalase-like activities of the EW(-). In an initial test, we found that the EW(+) could successfully disinfect a mycotoxicosis-causing fungus and inactivate its mycotoxins. Here, we report that the EW(+)sterilizes A. paratisicus and eliminates the mutagenicity of aflatoxin B₁ (AFB₁) for Salmonella typhimurium strains TA-98 and TA-100.

MATERIALS AND METHODS

Chemicals and Reagents. Aflatoxins B_1 , B_2 , G_1 , and G_2 were purchased from Sigma-Aldrich (St. Louis, MO). The chemicals used were high-performance liquid chromatography (HPLC)-grade acetonitrile (Wako Pure Chemicals, Osaka, Japan), HPLC-grade methanol (Wako Pure Chemicals), trifluoroacetic acid (G. R. grade, Nakalai Tesque, Kyoto, Japan), chloroform (G. R. grade, Nakalai Tesque), ethyl acetate (Nakalai Tesque), sodium chloride (G. R. grade, Nakalai Tesque), mannitol (G. R. grade, Wako Pure Chemicals), and thiourea (G. R. grade, Wako Pure Chemicals). The water used for electrolysis and other procedures was purified with a Milli-Q system (Millipore, MA). Other chemicals used were guranteed reagent grade purchased from Nakalai Tesque.

Safety Precautions. Aflatoxins are extremely toxic, mutagenic, and carcinogenic compounds. As a safety precaution, all neat aflatoxin reagents were handled in a glovebox or thoroughly controlled safety cabinet in a P2 level facility. Degradation of aflatoxin solutions was performed by mixing with 10% KOH in ethanol and subsequent autoclaving in the tightly sealed vials. However, after the inactivation effect of the electrolyzed anodic NaCl solution (EW(+)) was confirmed, aflatoxins in a tightly sealed vial, kept for 30 min, and then subjected to autoclaving at 121 °C for 20 min. Contaminated glassware, vials, tubes, etc. were sealed in high-security disposals, autoclaved at 121 °C for 20 min, and thereafter incinerated.

Preparation of Electrolyzed NaCl Solutions. Electrolyzed NaCl solutions were prepared by electrolyzing 0.1% (17.1 mM) NaCl solution at 9-12 V of direct current (dc) for 10 min using a two-compartment type batch scale electrolysis apparatus (Super Oxseed Labo, Aoi Electronic Corp., Kannami, Shizuoka, Japan) divided by an ion exchangeable diaphragm. Electrolyzed NaCl solutions were prepared 5-10 min before their use in tests to evaluate their disinfectant and decomposition properties against AFB₁-forming fungus and its product aflatoxins.

The general definition of available chlorine includes free form chlorine such as HOCl, Cl_2 , and hypochlorite ion (OCl⁻) that accept an electron and bound form chlorine such as chloramines. However, considering the fact that the abundance of chemical formulas mentioned above is largely dependent upon pH and pK_a for HOCl = 7.4 (23–25), we mean the available chlorine for EW(+) and for sodium hypochlorite (NaOCl) kept at pH 3 molar concentration of HOCl, whereas those for NaOCl kept at pH 11 and for EW(-) mean OCl⁻. The available chlorine concentration of both the EW(+) and the EW(-) was measured by iodometry and by electrotitration using an

Table 1. Physicochemical Parameters of Electrolyzed NaCl Solutions^a

parameter	anode solution	cathode solution	ultrapure water ^b
pH available chlorine	EW(+) 2.50 ± 0.06 39.4 ± 0.89	EW(–) 11.65 ± 0.12 0.51 ± 0.08	5.82 ± 0.04 ND
[mM] dissolved oxygen	$\begin{array}{c} [0.75 \pm 0.02] \\ 14.4 \pm 0.99 \end{array}$	$\begin{array}{c} [0.01 \pm 0.002] \\ 1.9 \pm 0.11 \end{array}$	[ND] 5.0 ± 0.27
ORP (mv)	1,164 ± 33.62	-878 ± 8.43	264 ± 26.48

^a Data were presented as the mean \pm SD for 5 measurements. Available chlorine for EW(+) represents HOCI in parts per million and millimolar and that for EW(-) in OCI⁻ anion (ppm and mM). ND, not detected. ^b Data for ultrapure water were obtained from water freshly prepared from a Milli-Q filtration apparatus (Millipore Corp.). Electrolysis was carried out for 10 min at room temperature in a diaphragm type apparatus (Superoxseed Labo) using 17.1 mM (0.1%) NaCl in ultrapure water prepared with a Milli-Q filtration apparatus.

"available chlorine meter" (Central Kagaku, Tokyo, Japan). The oxidation/reduction potential (ORP) and pH were also measured. Physicochemical data obtained from five measurements are presented in **Table 1**, and a detailed analysis of the properties of disinfection and deactivation of aflatoxin-forming fungus, *Aspergillus parasiticus*, and its products by the electrolyzed NaCl solutions is given in the Results and Discussion.

Disinfection of A. parasiticus with Electrolyzed NaCl Solutions. A. parasiticus IFO-30179 (equivalent to ATCC15517) was used to examine the antimicrobial activity of the electrolyzed solutions against mycotoxin-producing fungus. All experimental procedures were carried out in an isolated safety box for biohazard prevention. Freeze-dried fungus spores, purchased from the Institute of Fermentation Osaka (Dosho-machi, Kita ward, Osaka, Japan), were suspended in sterilized distilled water at a concentration of 106 spores/mL and then inoculated into a liquid medium specific for A. flavus and A. parasiticus (AFPA medium that consisted of 20 g of yeast extract, 10 g of peptone, 0.5 g of ammonium ferric citrate, 100 mg of chloramphenicol, and 2 mg of 2.6-dichloro-4-nitroaniline in 1 L of 1.5% agar). After 2-10 h growth of the fungus, an aliquot was taken to estimate the cell population with an adenosine 5'-triphosphate analyzer (Toa-Electronics Inc., Tokyo), and the culture was diluted with sterilized distilled water to make a stock cell suspension containing 10⁵ colony-forming units (cfu)/mL. For the disinfectant experiment, 10 μ L containing 10³ cfu from the stock cell suspension was separately mixed with 0.01, 0.02, 0.1, 0.2, 0.5, and 1 mL of the electrolyzed NaCl solutions. The EW(+) of 0.01-1 mL contained ca. 8, 15, 80, 150, 390, and 800 µmol HOCl, respectively. The estimated concentration of available chlorine in the form of the OCl- anion in the 1-, 2-, 10-, 20-, 50-, and 100-fold volumes of EW-(-) are ca. 0.1, 0.2, 1.1, 2.2, 5.5, and 11 nmol, respectively. In the control test, cell suspensions were exposed to 17.1 mM (0.1%) NaCl. After each exposure for 15 min, sterilized distilled 10 mM mannitol as a terminator was added to the suspension to a volume of 2 mL. Subsequently, 1.0 mL of each sample solution was inoculated on to AFPA agar medium and incubated for 5 days at 25 °C. The disinfection effect was evaluated by the occurrence of fungal colonies on the agar plate. As the fungal growth could not be determined precisely by cfu, the growth was presented semiquantitatively.

Treatment of Aflatoxins with the Electrolyzed NaCl Solutions or NaOCl. AFB₁ and a mixture of aflatoxin B₁, B₂, G₁, and G₂ were dissolved in chloroform in use. Aliquots containing 40 ng of the aflatoxin mixture (10 ng of each aflatoxin) or 10 ng of AFB₁ were placed in vials, and chloroform was evaporated under N₂. Volumes of EW(+) or NaOCl solution (10–2000 μ L representing 8–1600 μ mol of the active chlorine species) HOCl (20) in EW(+), and NaOCl solution kept at pH 3 or OCl⁻ in NaOCl solution kept at pH 11 were added to tubes containing the aflatoxins so that the molar ratio of "active chlorine" to aflatoxin ranged from 1 to 200. Tubes containing aflatoxins and EW(+) were allowed to sit for 10 min. Similar volumes (10– 2000 μ l) of EW(-) were added to separate aflatoxin-containing tubes,

Detoxification with Electrolyzed NaCl Solution

but the concentrations of "active chlorine" in the form of OCl^- in these tubes were a one hundredth of those of EW(+) in each case. Samples were then examined for aflatoxin content as described below. Separate experiments with 10 ng of AFB₁ samples were conducted in a similar manner except that incubation times (0, 2.5, 5, 10, and 60 min) and temperatures (0, 20, 30, and 45 °C) were varied. At the end of the incubation periods, absolute ethanol was added to all tubes so that a final volume of 1 mL was achieved. Samples were prepared for and analyzed by HPLC as described below.

Effect of Radical Scavengers. Assuming that reactive chemical species, such as OH radicals and/or Cl radicals originating from HOCl, are involved in the disinfectant process, we examined the effect of pretreatment of the EW(+) before exposure to AFB_1 with mannitol that has been regarded as OH radical specific scavenger (26) and thiourea that has been regarded as a universal radical scavenger (27, 28). Mannitol was added to the EW(+) at ratios of 1 to 10 (molar ratio of mannitol to available chlorine as HOCl); similarly, thiourea was added to the EW(+) at ratios of 0.03 to 1 (molar ratio of thiourea to available chlorine as HOCl). Exposure of AFB_1 to the EW(+) containing mannitol or thiourea was performed at room temperature for 10 min, and then, the reaction products were extracted with CHCl₃ and separated by HPLC to examine changes in AFB_1 . See the chromatographic analysis section below for HPLC conditions.

Chromatographic Analyses of Aflatoxins Treated with Electrolyzed NaCl Solutions. (a) High-Performance Thin-Layer Chromatography (HPTLC). AFB₁ and a mixture of equal amounts of AFB₁, AFB₂, AFG1, and AFG2 that were exposed to different molar ratios of EW-(+), EW(-), NaOCl used at pH 11, and NaOCl at pH 3 in the separate experiments as explained in the previous section were subjected to HPTLC. After aflatoxin was exposed to increasing molar ratios of the electrolyzed NaCl solutions, 1.0 mL of ethyl alcohol was added to the mixture, and 0.5 mL of ethyl acetate was added and shaken vigorously to extract aflatoxin and its reaction products into the organic solvent phase. Extraction with ethyl acetate was repeated three times. Ethyl acetate was carefully evaporated off under an N2 gas stream, and then, 100 μ L of fresh ethyl acetate was added. Twenty microliters of the ethyl acetate extract of aflatoxin/electrolyzed solution reaction mixtures and 20 μ L of either the AFB₁ solution or the aflatoxin mixture, with or without exposure to electrolyzed solution, were applied to HPTLC plates (10 cm \times 10 cm, silica gel 60 precoated plate; Merck Darmstadt, Germany) and developed with a 9:1 (v/v) mixture of CHCl₃, acetone for 7 cm. Aflatoxin analogues were detected as a bluish-white spot under UV-A (365 nm) illumination.

(b) HPLC. (b-1) HPLC of Derivatized AFB1. Following up the results of HPTLC, the change of AFB1 was further examined quantitatively on HPLC. Because preliminary experiments with HPTLC revealed that exposing EW(+) containing 24–56 μ mol HOCl to 1.3 nmol AFB₁ diminished the AFB1 spot gradually, the decrease of AFB1 was quantitatively determined by HPLC after derivatization to trifluoroacetic acid. For the sample without any treatment as a control, 400 ng (1.3 nmol) of AFB₁ in 10 μ L of ethanol was put in the sealed vial, and then, ethanol was evaporated off under N2, followed by trifluoroacetylation with 20 µL of trifluoroacetic acid anhydride (G.R grade, Wako Pure Chemicals, Inc.) in a tightly sealed glass vial by vigorous shaking and then incubated for 15 min at room temperature in the dark. Next, 180 μ L of a 1:9 (v/v) mixture of acetone/water was added. The solution was further mixed vigorously, and then, 20 μ L of the reactant was subjected to HPLC. For exposure to EW(+), 400 ng (1.3 nmol) of AFB₁ in 10 μ L of ethanol was taken; then, ethanol was evaporated off under N₂; then, 10, 20, 30, 40, 50, 60, and 70 µL of EW(+) containing 8, 16, 24, 32, 40, 48, and 56 μ mol of HOCl, respectively, were added to react with AFB₁ for 15 min. After 15 min of reaction, reacted AFB₁ solutions were evaporated off under vacuum and then trifluoroacetylated by the same procedure as described for the AFB_1 without EW(+)treatment. HPLC was run on a Hitachi high-performance liquid chromatograph equipped with Intelligent Pump (Hitachi L-6200), a Hewlett-Packard HP1046A programmable fluorescence detector and integrator (Hitachi D-2500). Reacted samples were separated on a reversed-phase octadecyl silane column (Zorbax ODS, Du Pont Co.) (4.6 \times 250 mm) and eluted with a 35:65 (v/v) mixture of acetonitrile and water at a flow rate of 1.0 mL/min at room temperature. AFB1

was detected by fluorometry with excitation at 365 nm and emission at 412 nm. Twenty microliters was injected onto the column. Chromatographic analysis was run for three times.

To examine how the elimination of AFB_1 with EW(+) was affected by reaction temperature, free radical scavengers (mannitol or thiourea) AFB_1 were quantified on the HPLC without derivatization to save analysis time.

(b-2) Effect of Reaction Temperature with EW(+) and AFB_1 on the Elimination of AFB_1 . To examine the effect of temperature on the deactivation of AFB_1 by EW(+), $25 \ \mu g$ (80 nmol) of AFB_1 was exposed to 0.17 μ mol of HOCl in 0.1 mL of EW(+) for 5 and 60 min at 0 °C. The EW(+) was evaporated off under vacuo and then dissolved in 1 mL of ethyl acetate; $10 \ \mu$ L was injected onto the column. The decrease of AFB_1 (80 nmol) and the appearance of secondary product by the reaction with EW(+) (0.17 μ mol) at 0, 20, 30, and 45 °C for 0–60 min were also monitored by HPLC.

(b-3) Effect of Pretreament of EW(+) with Radical Scavengers on the Elimination of AFB₁. To confirm the participation of free radical (OH radical) in EW(+) on the elimination of AFB₁, 0–200 μ L of 30 mM mannitol was added to 600 μ L of EW(+) containing 0.38 μ mol HOCl by the mixing molar ratio of 0-, 1-, 2-, 5-, and 10-fold for 10 min prior to exposure to AFB₁ (128 nmol).

To examine the effect of pretreatment with thiourea on the elimination effect of EW(+), 1 mM thiourea was added to 600 μ L of EW(+) containing 0.38 μ mol HOCl by the mixing ratios of thiourea/HOCl in EW(+) 0-, 0.03-, 0.1-, and 1-fold. Kept standing for 10 min at 0 °C, the thiourea-treated EW(+) was exposed to 128 nmol of AFB₁ for 10 min at 30 °C.

After 10 min of reaction with radical scavenger-treated EW(+) at 30 °C, the reactant was dissolved in 40 μ L of chloroform, and then, 10 μ L was injected onto an HPLC column to determine the remaining AFB₁.

AFB₁ solutions reacted with/without EW(+) and pretreatment of EW(+) with/without radical scavenger were analyzed on an HPLC equipped with a Hitachi L-6200 Intelligent Pump, fluorescence detector (Hitachi F-1050), Hitachi D-2500 Chromato-Integrator, and reversed-phase column ODS-80 (4.6 mm \times 150 mm) (TOSOH TSK-Gel) without any chemical derivatization. Gradient elution was used at a flow rate of 1.0 mL/min with 30% acetonitrile in water from 0 to 40 min, followed by a linear increase in acetonitrile from 30 to 100% between 40 and 70 min. Eluants were monitored fluorometrically using excitation wavelength at 365 nm and emission wavelength at 450 nm.

For the radical scavenger experiments, elution peaks were monitored at 365 nm, but all other analytical conditions were the same as described above. The chromatographic run was repeated three times in each analysis.

Mutagenicity Test for Salmonella typhimurium TA-98 and TA-100. The mutagenicity of AFB₁ was evaluated by a conventional Ames test using S. typhimurium strains TA-98 and TA-100 (29). Cultures of S. typhimurium TA-98, containing a histidine frame-shift mutant, and TA-100, containing a histidine missense mutation (30), were purchased from the Institute of Fermentation, Osaka. After 200 ng of AFB1 (0.64 nmol) was mixed with either 100 μ L of EW(+) containing a 0.76 nmol equivalent of HOCl as the available chlorine and the mixture was kept standing for 10 min, a 20 µL aliquot was added to 500 µL of S9 mixture or phosphate buffer (pH 7.5 for S9 mixture), followed by 100 μ L of S. typhimurium TA-98 or TA-100 strains containing 107 cfu/mL. For the control, 100 µL of dimethyl sulfoxide was added in place of the electrolyzed solution. The mixture was incubated for 20 min at 37 °C with shaking, and then, 2 mL of soft agar was added before inoculation on to Vogel-Bonner E agar medium (31) for 48 h at 37 °C. Mutagenicity was assessed by the numbers of colonies of revertant occurring in the presence of the S9 mixture. Other experimental conditions were the same as for the mutagenicity assay of AFB1-2,3dichloride by Swenson et al. (32). The mutagenicity test was repeated five times, and data were presented as the mean \pm standard deviation (SD) for n = 5.

Identification of Radical Species by Electron Spin Resonance (ESR). The anode solution was analyzed by ESR spectroscopy to determine whether hydroxyl radicals (OH[•]) might be involved in its disinfection properties. The anode solution (200 μ L) was mixed with

Table 2. Effect of Electrolysis Time on Physicochemical Properties of the Anode Solution $[EW(+)]^a$

electrolysis time (min)	available chlorine (µM)	рН	ORP (mV)
0	ND	5.50 ± 0.10	376 ± 29
1	ND	3.53 ± 0.08	983 ± 25
3	88 ± 22.2	2.94 ± 0.07	1065 ± 5
6	371 ± 17.4	2.66 ± 0.12	1109 ± 9
10	624 ± 14.5	2.56 ± 0.05	1120 ± 3
15	976 ± 25.4	2.50 ± 0.05	1157 ± 2
20	1617 ± 5.6	2.45 ± 0.07	1163 ± 1
30	2356 ± 26.1	2.37 ± 0.04	1165 ± 1

 a A 17.1 mM (0.1%) NaCl solution was electrolyzed at 9–11 V dc at room temperature (25 °C) using a diaphragm type device (Superoxseed Labo). Data are the means \pm SD for n= 4.

10 μ L of an 890 mM solution of the spin-trapping agent DMPO (5,5dimethyl-1-pyrroline-1-oxide) to make a spin adduct and then analyzed by ESR spectrometry using a JES-RE3X/ESR data system ESPRIT330 (JEOL) and previously described experimental conditions (*33*).

Namely, ESR spectra were recorded with a JEOL JES-RE3X that was controlled by a computer system JEOL ES-ESPRIT 300. Measurement conditions were as follows: magnetic field, 335.5 ± 5 mT; resonance frequency, 9.41 GHz; modulation frequency and modulation width, 100 kHz and 0.063 mT; microwave power, 4 mW; response time, 0.1 s; amplitude, \times 300; sweep time, 2 min. The spin trap reagent, DMPO (8.9M), was purchased from Dojin Laboratories (Kumamoto, Japan).

ESR measurements were done under the experimental conditions. An 890 mM DMPO water solution, 10 μ L, anode solution, 200 μ L, and FeSO₄ solution, 50 μ L, and a volume of 130 μ L were mixed and were transferred to a flat quartz ESR cuvette. The cuvette was placed in an ESR spectrometer, and recordings were made at room temperature. The ESR parameter, hyperfine-coupling constant (hfcc) obtained from ESR spectra of spin adducts, was finally determined by the computer simulation by using hfcc assigned to a spin adduct (DMPO–OH) generated by the reaction of DMPO and hydroxyl radical (HO) in anode solution.

RESULTS AND DISCUSSION

Physicochemical Properties of Electrolyzed NaCl Solutions. The physicochemical parameters of the EW(+), EW(-), and ultrapure water used for electrolysis varied considerably (Table 1). The EW(+) was strongly acidic, had high levels of dissolved oxygen and available chlorine in the form of HOCl, and had a high ORP. By contrast, the EW(-)was strongly alkaline, had a low level of dissolved oxygen, and had an extremely low ORP (-878 mV). Available chlorine was almost negligible in the EW(-). In other words, the EW(+) is highly oxidative, whereas the EW(-) is highly reductive; in addition, the parameters of both of these solutions were distinctly different from those of the ultrapure water. The data presented in **Table 1** were obtained from the electrolysis of 0.1% (or 17.1) mM) NaCl for 10 min; however, the values of these parameters, in particular the available chlorine that functions as an oxidant, were dependent on the length of electrolysis time (Table 2).

Disinfection of *A. parasiticus* with Electrolyzed NaCl Solution. To disinfect 10^3 cfu of *A. parasiticus* completely, at least a 50-fold volume of the EW(+), providing 20–30 ppm of available chlorine, or equivalent to $380-580 \,\mu$ mol of HOCl, was required (Figure 1). In other words, at least 0.4-0.6 mM of HOCl in the EW(+) must be secured in the suspension to disinfect 10^3 cfu of *A. parasiticus* completely. By contrast, the EW(-) did not disinfect *A. parasiticus* (Table 3). These data were obtained from a model experiment.

Figure 1. Disinfection of *A. parasiticus* by electrolyzed NaCl anode solution (EW(+)) *A. parasiticus* at a concentration of 10³ cfu in 0.01 mL was immersed in increasing volumes of EW(+) for 12 h at room temperature. The solution was then inoculated on to AFPA agar medium and incubated for 5 days at 30 °C. C (lower left Petri dish): untreated control; ×10 (lower right Petri dish): 10-fold volume of EW(+), containing ca. 80 μ mol HOCl; ×20 (upper left Petri dish), 20-fold volume of EW(+) containing 160 μ mol HOCl; ×50 (upper middle Petri dish), 50-fold volume of EW(+) containing 390 μ mol HOCl; ×100 (upper right Petri dish), 100-fold volume of EW(+) containing 800 μ mol HOCl. Note white fluffy mycelia present on the control, ×10, and ×20 Petri dishes.

 Table 3. Fungicidal Effect of Electrolyzed NaCl Solutions on A. parasiticus^a

		volume ratio of electrolyzed solution					
added solution	control	×1	×2	×10	×20	×50	×100
anode solution cathode solution	+++ +++	+++ +++	+++ +++	+++ +++	+++ +++	± +++	- +++

^{*a*} Ten microliters of the cell suspension (10³ cfu) was added to freshly prepared anode or cathode solution at different mixing ratios (0–100 times the volume ratio). The estimated concentrations of HOCI in the 10-, 20-, 50-, and 100-fold volumes of EW(+) are ca. 8, 15, 80, 150, 390, and 800 μ mol, respectively. The estimated concentration of available chlorine in the form of OCI⁻ anion in the 10-, 20-, 50-, and 100-fold volumes of EW(-) are ca. 0.1, 0.2, 1.1, 2.2, 5.5, and 11 nmol, respectively. In the control test, cell suspensions were exposed to 0.1% NaCI. After each exposure, cells were then inoculated on to AFPA agar plates and incubated at 25 °C for five days. As the fungal growth could not be determined precisely by cfu, the growth is presented semiquantitatively: +++, full growth on plate; ±, few colonies; –, no growth. Experiment was repeated in triplicate.

To examine the practical capability of EW(+) to disinfect microorganisms including fungi attaching on the surface of food materials, we compared its effect with black pepper corn, turmeric finger, and coriander seeds. At least 50 mL of EW(+) 0.57 mM HOCl, satisfying concentration, to kill microbes mentioned above worked to clean up attaching microbes on the surface of 1 g of spices when EW(+) was used in combination with EW(-) (34) (Suzuki et al., unpublished data). Notably, the attached microorganisms, including fungi and spores observed by scanning microscopy, were not killed after a single 15 min exposure to a 50-fold volume of the EW(+) containing 30 µmol HOCl. However, a 15 min exposure to a 50-fold volume of the EW(-), followed by a 15 min exposure to a 50-fold volume of the EW(+), did effectively kill the microbes. Thus, although the EW(+) seems to be an effective disinfectant in model situations, for practical applications, a combined use of the EW(-) and the EW(+) might be needed. Detailed information will be reported later in an appropriate journal (Suzuki et al., in preparation).

Figure 2. HPTLC analysis of aflatoxin exposed to electrolyzed NaCl solutions and NaOCl. After the aflatoxin was exposed to increasing molar ratios of the electrolyzed NaCl solutions, solutions were prepared for HPTLC as described in Materials and Methods. (a) HPTLC of individual aflatoxins B₁, B₂, G₁, and G₂ (10 ng of each) and a mixture of all four aflatoxins with or without exposure to EW(+). B₁, B₂, G₁, G₂, and mix indicate aflatoxins without treatment; numbers indicate the molar mixing ratio of the aflatoxin mixture to the EW(+). Lane 1, $1:0.7 \times 10^5$; 2, $1:2.8 \times 10^5$; 3, $1:4.2 \times 10^5$; 4, 1:5.6 \times 10⁵; 5, 1:7.0 \times 10⁵; 6, 1:14 \times 10⁵; 7, 1:28 \times 10⁵; 8, 1:42 \times 10⁵. Note that no fluorescent spot is seen with an approximately 28 \times 10⁵-fold molar addition of HOCI in the EW(+) over the 40 ng (ca. 0.12 nmol) of sum of 10 ng each of 4 aflatoxin analogues mixture. (b) AFB₁ after exposure to EW(+) or EW(-). Ten nanograms (0.03 nmol) of AFB₁ was mixed with EW(+) by the molar ratio of 1:0.7 × 10⁵ to 1:7 × 10⁵ in molar equivalent terms of AFB₁ to HOCI in EW(+). The EW(-) does not contain significant concentration of HOCI; however, 1-10-fold volumes were added to the AFB1 solution. Lane 1, control AFB₁ (10 ng); Lanes 2–5, AFB₁ exposed to EW(+) of 0.7 × 10⁵-fold, 2.1 × 10⁵-fold, 3.5 × 10⁵-fold, and 7.0 × 10⁵-fold molar equivalents of HOCI. Lanes 6-9, AFB₁ exposed to 1-, 3-, 5-, and 10-fold volumes of EW(-). (c) AFB₁ after exposure to NaOCI at pH 11.5. Ten nanograms (0.03 nmol) of AFB₁ was mixed with NaOCI solutions containing between molar ratio of AFB₁ to EW(-) by 1:0.7 \times 10⁵ and 8 (1:5.6 \times 10⁵) in terms of molar equivalents of available chlorine as OCI⁻ anion at pH 11.5. Lane C, control AFB₁; lanes presented by numerals 1–8 mean mixing ratio with NaOCI: 1, 0.7×10^5 ; 2, 1.4×10^{5} ; 3, 2.1×10^{5} ; 4, 2.8×10^{5} ; 5, 3.5×10^{5} ; 6, 4.2×10^{5} ; 7, 4.9×10^{5} ; 8, 5.6×10^{5} . Note that AFB₁ does not disappear even at 5.6×10^{5} -fold mixing ratio. The arrow indicates AFB₁. (d) AFB₁ after exposure to NaOCI at pH 3. Ten nanograms (0.03 nmol) of AFB₁ was mixed with NaOCI solutions by the molar ratios of AFB₁ to HOCI between $1:0.7 \times 10^5$ and $1:5.6 \times 10^5$. Molar equivalents of available chlorine of NaOCI can be regarded as HOCI after pH adjustment at 3.0. Lane C, control AFB₁; lanes represented by numerals 1–8 mean mixing ratio with NaOCI the same as panel c except for pH 3. The arrow indicates AFB₁. The AFB₁ spot disappeared after exposure to 4.9 × 10⁵ times the molar amount of NaOCI at pH 3. Note that the mixing ratio and experimental conditions were exactly the same as panel c except for pH value. Note that AFB₁ disappears at 4.9 × 10⁵-fold molar mixing ratio (lane 7). Compare the chromatogram in panel c.

HPTLC Assessment of the Degradation of Aflatoxin. The fluorescent spots of AFB₁ and the B₁, B₂, G₁, and G₂ mixture of aflatoxin on HPTLC plates disappeared after exposure to seven times the molar amount of available chlorine in the form of HOCl to each aflatoxin (**Figure 2a**). The EW(+) completely abolished the AFB₁ spot; however, the strongly alkaline EW-(-) had no effect on AFB₁ (**Figure 2b**). Theoretically, reactive chlorine that can be expressed as available chlorine including HOCl, OCl⁻, or dissolved Cl₂ cannot be formed in the cathode compartment. The existence of low level available chlorine in the EW(-) should be due to leakage of EW(+) in the anode compartment into the cathode solution through the ion exhangeable membrane of the device.

Exposure of AFB₁ to eight times the molar amount of NaOCl at pH 11.5 did not abolish the AFB₁ spot (**Figure 2c**); however, AFB₁ disappeared if NaOCl was adjusted to pH 3.0 (**Figure**

2d). These results indicate that NaOCl exists in the form of HOCl at pH 3 and OCl⁻ at pH 11. Namely, the chemical species involved in destroying aflatoxin is not the ClO⁻ ion but is HOCl, which can give rise to a reactive OH radical and probably a Cl radical.

HPLC Assessment of the Degradation of Aflatoxin. Figure 3a shows that the trifluoroacetylated AFB₁ peak on HPLC disappeared after exposure to the EW(+). The peak height of trifluoroacetylated AFB₁, which eluted at 5.1 min, decreased with increasing molar ratios (on the basis of available chlorine as HOCl) of the EW(+) and disappeared completely after exposure to 43 × 10³ times the molar amount of HOCl in EW(+) (**Figure 3b**). Although the peaks eluting at 3.1 and 8.3 min have not been assigned as yet, the peak at 8.3 min is likely to be a reaction product of AFB₁ formed after exposure to the EW(+).

Figure 3. Reduction in AFB1 peak height on HPLC after exposure to the anode solution. (a) Reduction in AFB₁ peak height with exposure to increasing volumes of EW(+) containing from 0 to 4.9×10^5 times the molar amount of HOCI. (A) AFB₁ without EW(+) exposure. The peak at 5.1 min corresponds to trifluoroacetylated AFB₁. The peak eluted at 3.15 min was not identified. (B) AFB₁ exposed to 0.19×10^{5} -fold molar excess of HOCI in EW(+). Eluted peaks at 3.12 and 8.25 min were not identified. (C) AFB₁ exposed to 0.44×10^5 -fold molar excess of HOCl in EW(+). Other experimental conditions are in the Materials and Methods. (b) Decrease of AFB₁ content with increasing contact molar ratio of HOCI in EW(+). AFB₁ (400 ng corresponding to 1.3 nmol) was contacted to EW-(+) varying its HOCI as described in the Materials and Methods. The content of the remaining AFB1 was determined by HPLC and plotted. Ordinate, relative amount of remaining AFB1 (percent); abscissa, mixing molar ratio of HOCI in EW(+) to AFB₁. Each plot represents the mean of three measurements.

Identification of the reaction product was carried out on liquid chromatography mass spectroscopy (LC-MS) in another experiment without derivatization. LC-MS analysis of AFB₁ and its reaction products with EW(+) revealed the formation of 8-OH-9-Cl-AFB₁, 5,9-dichloro-8-OH-AFB₁, and 5,8,9-trichloro-AFB₁. Detailed information on the identification of the reaction products will be reported later (Suzuki et al., in preparation).

Effect of Reaction Time, Temperature, and Available Chlorine Concentration. The effect of exposure time and

Figure 4. Effect of EW(+) exposure time on AFB₁ and its reaction products at 0 °C. AFB₁ (80 nmol) was exposed to EW(+) (8.5 μ mol HOCI as available chlorine) at pH 2.3, for either 5 or 60 min at 0 °C. AFB₁ was analyzed by HPLC without derivatization as described in the Materials and Methods. Chromatogram on top (represented by A), AFB₁ without exposure (the AFB₁ peak on the chromatogram is 1/8 scale of the real size); chromatogram in the middle (represented by B), exposure of 6.8 μ mol HOCI in EW(+) to 80 nmol AFB₁ for 5 min at 0 °C; chromatogram at the bottom, exposure of 6.8 μ mol HOCI in EW(+) to 80 nmol AFB₁ for 5 min at 0 °C; chromatogram at 12.5 min was accompanied by the appearance of a major peak at $t_{\rm R} = 8 \min (8-OH-9-CI-AFB_1)$ and a minor peak at $t_{\rm R} = 35 \min$. The minor peak at $t_{\rm R} = 35 \min$ was identified as an artifact. Note that the chromatograms shown were obtained without derivatization of the reaction products and so differ from those shown in **Figure 3**.

temperature on the annihilation of AFB1 by EW(+) was assessed by HPLC (Figure 4). Free AFB₁ eluted as a single peak at 12.5 min, but this peak was replaced with a major peak at 8 min that was identified as 8-OH-9-Cl-AFB1 and a minor peak at 35 min that was identified as 5,9-dichloro-8-acetoxy-AFB₁ (an artifact product) after AFB1 was exposed to EW(+) at 0 °C for either 5 or 60 min (Figure 4A-C). The relation of the exposure temperature to both the disappearance of AFB1 and the appearance of a reaction product, 8-OH-9-Cl-AFB₁ ($t_{\rm R} = 8$ min), is shown in Figure 5. As the amount of AFB1 decreased, the amount of reaction product increased. Low temperature slightly slowed the disappearance of AFB₁, but even after 5 min of exposure even at 0 °C, almost 40% of AFB₁ had disappeared. Considering the fact that the peak eluting at 8 min is 8-OH-9-Cl-AFB₁, the significant disappearance of AFB₁ with an increase of the OH, Cl adduct of AFB1 at 0 °C suggests that this reaction is initiated by free radicals. Exposing AFB₁ to an equimolar amount of HOCl in the EW(+) for 5 min decreased the amount of AFB_1 by 40%.

Effect of Radical Scavengers on AFB_1 Degradation. Figure 6 shows the effect of the addition of mannitol and thiourea to the EW(+) before exposure to AFB_1 . As the molar ratio of mannitol to available chlorine in the EW(+) increased, the percentage of the decomposed AFB_1 decreased. Similarly, when AFB_1 was exposed to EW(+) containing one-tenth of the molar

Figure 5. Effect of temperature and exposure time on the AFB₁ and the appearance of its reaction product 8-OH-9-CI-AFB₁ eluting at 8 min. The ordinate indicates the fluorescence intensities at 450 nm; the abscissa indicates the exposure time in minutes. (A) Decrease in AFB₁ with increasing exposure time at various temperatures. (B) Increase in appearance of the reaction product, 8-OH-9-CI-AFB₁ ($t_R = 8 \text{ min}$), with increasing exposure time at various temperatures. Experimental conditions are the same as in **Figure 4**. Each plot represents the mean of three measurements.

amount of thiourea to HOCl in EW(+), only 25% of AFB₁ was destroyed, and with an equal molar ratio of thiourea to HOCl, AFB₁ was not destroyed at all. The known radical scavenging effect of mannitol and especially thiourea indicates distinctly that the disappearance of AFB₁ is due to a free radical-mediated reaction. The reason mannitol did not protect AFB₁ completely from the EW(+) may be due to an insufficient concentration of mannitol. For mannitol to exhibit an OH radical-scavenging effect, a higher concentration to scavenge OH radicals satisfactorily is required because 10 times as much molar amount of mannitol to HOCl protected only 16% of AFB₁ (**Figure 6a**).

Mutagenicity of Electrolyzed Solution Treated AFB₁. Three nanomoles of AFB₁ showed a high mutagenicity for both *S. typhimurium* TA-98 and TA-100 strains (**Table 4**), but this mutagenicity disappeared after a 10 min exposure to EW(+). **Table 4** shows the reduction in AFB₁ mutagenicity caused by increasing molar amounts of HOCl in the EW(+). Mutagenicity was reduced markedly after exposure to ca. 20-fold molar amount of HOCl in the EW(+) and showed less than 200% of relative mutagenicity indicating mutagenicity negative by exposure to ca. 60-fold molar amount or equivalent to 173 nmol of HOCl in both TA-98 and TA-100 strains.

ESR Analysis of Chemical Species in Anode Solution. To identify radical species, the EW(+) was subjected to ESR using the spin-trapping agent DMPO. At first, a weak spectrum indicating the formation of the OH radical was obtained (data not shown). Subsequently, to enhance the spectrum, we added 10 mL of 1 mM FeSO₄ and 10 mL of DMPO to the EW(+). In the presence of Fe²⁺ ion, an ESR spectrum typical of the reaction of DMPO with hydroxyl radicals (Fenton reaction) (*35*), as shown in **Figure 7**, was obtained, suggesting that the EW(+) also contains H₂O₂. Thus, these results indicate the presence of

Figure 6. Effect of radical scavengers on the degradation of AFB₁ by EW(+). Either mannitol or thiourea was added to the EW(+) at increasing molar ratios as HOCI (0.640 mM) before exposure to AFB₁ (0.128 mM). Exposure of radical scavenger-treated EW(+) was done for 10 min at 30 °C. The ordinate shows the relative amount of remaining AFB₁, calculated as a percentage of the sum of the total peak area of control AFB₁ monitored at 365 nm; the abscissa indicates molar ratios of radical scavenger to HOCI in EW(+). (a) Effect of mannitol addition to EW(+) on the of AFB₁. Mannitol was added to EW(+) at 2–10 times the molar amount of HOCI in EW(+) prior to exposure of EW(+) to AFB₁. (b) Effect of thiourea addition to EW(+) on the degradation of AFB₁. Thiourea was added to EW(+) at 0.1–1.0 times the molar amount of HOCI in EW(+) to AFB₁.

OH radicals and H_2O_2 in the EW(+). Furthermore, we confirmed the presence of HOCl at the acidic pH range in the EW(+) by comparing ultraviolet spectra between 200 and 350 nm; i.e., we obtained similar spectra identical to those of standard HOCl and NaOCl and EW(+) under different pH values as reported by Nakagawara et al. (*30*) with EW(+) and NaOCl under different pH conditions.

In summary, we have shown that electrolyzed NaCl anode solution (EW(+)) sterilizes *A. paraciticus* and eliminates the

Table 4. Effect of Anode Solution on the Mutagenicity of AFB₁^a

	relative mutagenicity for Salmonella typhimurium (%)		
sample	TA-98	TA-100	
AFB_1 (3 nmol) AFB_1 + anode solution	4039 ± 250	1010 ± 36	
3 + 58 nmol	514 ± 12	224 ± 8	
3 + 173 nmol	NG	27 ± 1	
3 + 288 nmol	NG	9±1	
3 + 575 nmol	NG	NG	

^a The mutagenicity test was carried out on His⁻ *S. typhimurium* TA-98 and TA-100 according to Maron and Ames (1983). Three nanomoles of AFB₁ was exposed to increasing volumes of the EW(+) with 0.77 mM (40 ppm) HOCI as available chlorine for 10 min at room temperature. This solution was then preincubated with an S-9 mixture for 20 min and incubated with *S. typhimurium* for 48 hours at 37 °C. Data are represented as the percentage of relative mutagenicity, which was calculated by [(cfu of the sample – cfu of the blank)/cfu of the blank] × 100. NG, negative growth (i.e., equal number of colony formation or less than the blank that did not include AFB₁). Different volumes of the EW(+) are expressed as nanomoles of HOCI. Data represent (mean ± SD) for five separate experiments.

Figure 7. DMPO spin trapped ESR signal of the EW(+). ESR spectrum of DMPO incubated with EW(+). The ordinate represents the intensity of signal; the abscissa indicates the intensity of the magnetic field. The typical 1:2:2:1 "fingerprint", demonstrating electron adduction, shows that OH radicals are present in the EW(+).

mutagenicity of aflatoxin AFB₁. Aflatoxin breaks down after exposure to EW(+), as determined by HPLC analysis; however, the chemical formula of the reaction products was not described in detail here. We have succeeded in identifying the major reaction product to be 8-OH-9-Cl-AFB₁ by LC-MS and nuclear magnetic resonance techniques. In the following paper, we describe the chemical formulas of the products formed after the exposure of ABF₁ to EW(+).

ACKNOWLEDGMENT

The authors express their sincere thanks to Mr. Masatake Nakayama, Artec Co., Tokyo, for his kind and useful information on the physicochemical nature of the electrolyzed NaCl solution and apparatus.

LITERATURE CITED

 Wilson, B. J. Mycotoxins and Toxic Stress Metabolites of Fungus-Infected Sweet Potatoes. In *Nutritional Toxicology*; Hathcock, J. N., Ed.; Academic Press Inc.: New York, 1982; Vol. 1, p 239.

- (2) Wilson, D. M.; Ryne, G. A. Factors affecting Aspergillus flavus group infection and aflatoxin contamination of crops. In *The Toxicology of Aflatoxins*; Eaton, D. L., Groopman, J. D., Eds.; Academic Press Inc.: San Diego, 1994; p 309.
- (3) Galvano, F.; Galofaro, V.; de Angelis, A.; Galvano, M.; Bognanno, M.; Galvano, G. Survey of the occurrence of aflatoxin M₁ in dairy products marketed in Italy. *J. Food Prot.* **1998**, *61*, 738–741.
- (4) Peitri, A.; Bertuzzi, T.; Bertuzzi, P.; Piva, G. Aflatoxin M1 occurrence in samples of Grana Padano cheese. *Food Addit. Contam.* **1997**, *14* (4), 341–344.
- (5) Swenson, D. H.; Miller, E. C.; Miller, J. A. Aflatoxin B1–2,3oxide; Evidence for its formation in rat liver in vivo and by human liver microsomes in vitro. *Biochem. Biophys. Res. Commun.* **1974**, *60*, 1036–1043.
- (6) Larsson, P.; Busk, L.; Tjaelve, H. Hepatic and extrahepatic bioactivation and GSH conjugation of aflatoxin B1 in sheep. *Carcinogenesis* 1994, 15, 947–955.
- (7) Putt, D. A.; Ding, X.; Coon, M. J.; Hollenberg, P. F. Metabolism of aflatoxin B₁ by rabbit and rat nasal mucosa microsomes and purified cytochrome P450, including isoforms 2A10 and 2A11. *Carcinogenesis* **1995**, *16*, 1411–1417.
- (8) Tsutsui, T.; Fujino, T.; Kodama, S.; Tainsky, M. A.; Boyd, J.; Barrett, J. C. Aflatoxin B₁-induced immortalization of cultured skin fibroblasts from a patient with Li-Fraumeni syndrome. *Carcinogenesis* **1995**, *16*, 25–34.
- (9) Gemechu-Hatewu, M.; Platt, K. L.; Oesch, F.; Hacker, H. J.; Bannasch, P.; Steinberg, P. Metabolic activation of aflatoxin B₁ to aflatoxin B1-8,9-epoxide in woodchucks undergoing chronic active hepatitis. *Int. J. Cancer* **1997**, *73* (4), 587–591.
- (10) Neucere, J. N. Inhibition of Aspergillus flavus Growth by Silk Extracts of Resistant and Susceptible Corn. J. Agric. Food Chem. 1996, 44, 1982–1983.
- (11) Zeringue, H. J., Jr.; Brown, R. L.; Neucere, J. N.; Cleveland, T. E. Relationship between C₆~C₁₂ alakanal and alkenal volatile contents and resistance of maize genotypes to *Aspergillus flavus* and aflatoxin production. *J. Agric. Food Chem.* **1996**, *44* (2), 403–407.
- (12) Kiermeier, F.; Meshaley, R. Influence of raw milk processing on the aflatoxin M content of milk products Z. Lebensm.-Unters.-Forsch. 1977, 164, 183–187.
- (13) Shahin, A. A.; Aziz, N. H. Influence of gamma rays and sodium chloride on aflatoxin production by *Aspergillus flavus*. *Microbios* **1997**, *90* (364–365), 163–175.
- (14) Gourama, H.; Bullerman, L. B. Anti-aflatoxigenic activity of Lactobacillus casei pseudoplantarum. Int. J. Food Microbiol. 1997, 34, 131–143.
- (15) Aibara, K.; Yano, N. New approach to aflatoxin removal. In *Mycotoxins in Human and Animal Health*; Rodricks, J. V., Hesseltine, C. W., Mehlman, M. A., Eds.; Pathotox. Publ., Inc.: Park Forest South, IL, 1977; pp 151–161.
- (16) D'Souza, D. H.; Brackett, R. E. The role of trace metal ions in aflatoxin B₁ degradation by *Flavobacterium aurantiacum*. J. Food Prot. **1998**, 61 (12), 1666–1669.
- (17) Liu, D. L.; Yao, D. S.; Liang, R.; Ma, L.; Cheng, W. Q.; Gu, L. Q. Detoxification of aflatoxin B₁ by enzymes isolated from *Armillariella tabescens. Food Chem. Toxicol.* **1998**, *36* (7), 563–574.
- (18) Venczel, L. V.; Arrowood, M.; Hurd, M.; Sobsev, M. D. Inactivation of *Cryptosporidium parvum* oocysts and *Clostridium perfringens* spores by a mixed-oxidant disinfectant and by free chlorine. *Appl. Environ. Microbiol.* **1997**, *63*, 1598–1601.
- (19) Hotta, K.; Kawaguchi, K.; Saitoh, F.; Suzuki, K.; Ochi, K.; Nakayama, T. Antimicrobial activity of electrolyzed NaCl solutions: effect on the growth of *Streptomyces* spp. *Actinomycetologica* **1994**, 8, 51–56.

- (20) Nakagawara, S.; Goto, T.; Nara, M.; Ozawa, Y.; Hotta, K.; Arata, Y. Spectroscopic characterization and the pH dependence of bactericidal activity of the aqueous chlorine solution. *Anal. Sci.* **1998**, *14*, 691–697.
- (21) Miyashita, K.; Yasuda, M.; Ota, T.; Suzuki, T. Strong antioxidant activity of cathodic solution produced by electrolysis of dilute NaCl solution. *Biosci. Biotechnol. Biochem.* **1999**, *63* (2), 421– 423.
- (22) Shirahata, S.; Kabayama, S.; Nakano, M.; Miura, T.; Kusumoto, K.; Gotoh, M.; Hayashi, H.; Otsubo, K.; Morisawa, S.; Katakura, Y. Electrolyzed-Reduced Water scavenges active oxygen species and protects DNA from oxidative damage. *Biochem. Biophys. Res. Commun.* **1998**, *234* (1), 269–274.
- (23) Engelbrecht, R. S.; Weber, M. J.; Salter, B. L.; Schmidt, C. A. Comparative inactivation of viruses by chlorine. *Appl. Environ. Microbiol.* **1980**, *40* (2), 249–256.
- (24) Bloomfield, S. F.; Uso, E. E. The antibacterial properties of sodium hypochlorite and sodium dichloroisocyanurate as hospital disinfectants. *J. Hosp. Infection* **1985**, *6* (1), 20–30.
- (25) Prutz, W. A. Interactions of hypochlorous acid with pyrimidine nucleotides, and secondary reactions of chlorinated pyrimidines with GSH, NADH, and other substrates. *Arch. Biochem. Biophys.* **1998**, *349* (1), 183–191.
- (26) Adam, W.; Andler, S.; Saha-Möller, C. R. DNA cleavage induced by oxyl radicals generated in the photosensitized decomposition of fatty ester hydroperoxides derived from oleic and linoleic acid. *Arch Biochem. Biophys.* **1998**, *349* (2), 261–266.
- (27) Ohkuma, S.; Katsura, M.; Chen, D. Z.; Guo, J. L.; Kuriyama, K. Brain Res. Mol. Brain Res. 1995, 34 (2), 347–350.
- (28) Gutman, M.; Laufer, R.; Eisenthal, A.; Goldman, G.; Ravid, A.; Inbar, M.; Klausner, J. M. Increased microvascular permeability induced by prolonged interleukin-2 administration is attenuated

by the oxygen-free-radical scavenger dimethylthiourea. *Cancer Immunol. Immunother.* **1996**, *43* (4), 240–244.

- (29) Maron, D. M.; Ames, B. N. Revised methods for Salmonella mutagenicity test. *Mutat. Res.* 1983, 113, 173.
- (30) McCann, J.; Spingam, N. E.; Kobori, J.; Ames, B. N. Detection of carcinogens as mutagens: Bacterial tester strains with R factor plasmids. *Proc. Natl. Acad. Sci. U.S.A.* **1975**, 72, 979–983.
- (31) Vogel, H. J.; Bonner, D. M. Acetylornithinase of *Escherichia coli*: Partial purification and some properties. *J. Biol. Chem.* 1956, 218, 97–106.
- (32) Swenson, D. H.; Miller, J. A.; Miller, E. C. The reactivity and carcinogenicity of aflatoxin B₁-2,3-dichloride, a model for the putative 2,3-oxide matabolite of aflatoxin B₁. *Cancer Res.* **1975**, *35*, 3811–3823.
- (33) Noda, Y.; Anzai, K.; Mori, A.; Kohno, M.; Sinmei, M.; Packer, L. Hydroxyl and superoxide anion radical scavenging activitites of natural source antioxidants using computerized JES-FR 30 ESR spectrometer system. *Biochem. Mol. Biol. Int.* **1997**, *42* (1), 35-44.
- (34) Suzuki, T.; Tanino, M.; Honda, M.; Sugiue, H.; Itakura, J.; Takama, K. Disinfection of black pepper corn with electrolyzed NaCl solutions and its safety assessment. Abstracts of Papers. Annual Meeting of Japan Bioscience, Biotechnology, and Biochemistry, Kyoto, Japan, April, 1996.
- (35) Cohen, G. In *The Neurobiology of NO[•] and [•]OH*; Chiueh, C. C., Gilbert, D. L., Colton, C. A., Eds.; Annals of the New York Academy of Sciences; New York Academy of Sciences: New York, 1994; Vol. 738, pp 8–14.

Received for review June 29, 2001. Revised manuscript received November 6, 2001. Accepted November 7, 2001.

JF0108361